Transforming Growth Factor β Inhibits Platelet Derived Growth Factor-Induced Vascular Smooth Muscle Cell Proliferation via Akt-Independent, Smad-Mediated Cyclin D1 Downregulation

نویسندگان

  • Abel Martin-Garrido
  • Holly C. Williams
  • Minyoung Lee
  • Bonnie Seidel-Rogol
  • Xinpei Ci
  • Jin-Tang Dong
  • Bernard Lassègue
  • Alejandra San Martín
  • Kathy K. Griendling
چکیده

In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AMP-activated protein kinase inhibits transforming growth factor-β-mediated vascular smooth muscle cell growth: implications for a Smad-3-dependent mechanism.

Dysfunctional vascular growth is a major contributor to cardiovascular disease, the leading cause of morbidity and mortality worldwide. Growth factor-induced activation of vascular smooth muscle cells (VSMCs) results in a phenotypic switch from a quiescent, contractile state to a proliferative state foundational to vessel pathology. Transforming growth factor-β (TGF-β) is a multifunctional sign...

متن کامل

Distinct role of cAMP and cGMP in the cell cycle control of vascular smooth muscle cells: cGMP delays cell cycle transition through suppression of cyclin D1 and cyclin-dependent kinase 4 activation.

cAMP and cGMP are known to suppress vascular smooth muscle cell (SMC) proliferation. In this study, our aim was to delineate the molecular mechanism underlying cAMP and cGMP suppression of cell cycle transition in human SMCs. cAMP inhibits both platelet-derived growth factor-stimulated cyclin-dependent kinase (cdk) 2 and cdk4 activation through upregulation of the cdk2 inhibitor p27(Kip1) and d...

متن کامل

BMP-2 inhibits proliferation of human aortic smooth muscle cells via p21

Wong, Gail A., Vincent Tang, Faten El-Sabeawy, and Robert H. Weiss. BMP-2 inhibits proliferation of human aortic smooth muscle cells via p21Cip1/Waf1. Am J Physiol Endocrinol Metab 284: E972–E979, 2003. First published January 14, 2003; 10.1152/ajpendo.00385.2002.—Bone-morphogenetic proteins (BMP)-2 and -7, multifunctional members of the transforming growth factor (TGF)superfamily with powerful...

متن کامل

XBP 1-Deficiency Abrogates Neointimal Lesion of Injured Vessels Via Cross Talk With the PDGF Signaling.

OBJECTIVE Smooth muscle cell (SMC) migration and proliferation play an essential role in neointimal formation after vascular injury. In this study, we intended to investigate whether the X-box-binding protein 1 (XBP1) was involved in these processes. APPROACH AND RESULTS In vivo studies on femoral artery injury models revealed that vascular injury triggered an immediate upregulation of XBP1 e...

متن کامل

Effects of hesperetin on platelet-derived growth factor-BB-induced pulmonary artery smooth muscle cell proliferation.

Hesperetin is a natural flavonoid, which has been reported to exert various biological activities and positive health effects on mammalian cells. The present study aimed to investigate the effects of hesperetin on the proliferation of primary cultured rat pulmonary artery smooth muscle cells (PASMCs), and to elucidate the possible underlying molecular mechanisms. The results of the present stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013